Modeling the consequences of thermal trait variation for the cane toad invasion of Australia.
نویسندگان
چکیده
Mechanistic species distribution models (SDMs) are ideally suited for predicting the nonnative distributions of invasive species, but require accurate parameterization of key functional traits. Importantly, any ability of the invader to acclimate or adapt rapidly to local conditions must be incorporated. Our field and laboratory studies measured phenotypic variation and tested for plasticity in the thermal sensitivity of locomotor performance and low-temperature tolerance of adult cane toads Bufo marinus in eastern Australia. We used a biophysical model to explore the adaptive significance of this variation and how it affected distribution predictions. Laboratory trials showed that geographic differences in low-temperature tolerance (i.e., the critical thermal minimum; CTMin) of field-caught toads reflect thermal acclimation, whereas populations differed in the thermal dependence of locomotor performance even after acclimation. Incorporating low-temperature tolerance as a dimension of the fundamental niche reduced the predicted southern distribution. To test whether these factors predicted to be range limiting were consistent with reduced performance for individuals, we used the biophysical model and daily climate data to conduct "virtual transplants." These models predicted that acclimation reduced cold stress by 32-100% for toads sheltering near the ground surface; toads inside burrows could remain above their CTMin, but the required burrow depth increased with latitude. Low-temperature tolerance of the adult phase may constrain the southern range limit of the cane toad in Australia, and plasticity in this trait may have facilitated the southward range expansion.
منابع مشابه
A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia.
To predict the spread of invasive species, we need to understand the mechanisms that underlie their range expansion. Assuming random diffusion through homogeneous environments, invasions are expected to progress at a constant rate. However, environmental heterogeneity is expected to alter diffusion rates, especially by slowing invasions as populations encounter suboptimal environmental conditio...
متن کاملDoes greater thermal plasticity facilitate range expansion of an invasive terrestrial anuran into higher latitudes?
Temperature has pervasive effects on physiological processes and is critical in setting species distribution limits. Since invading Australia, cane toads have spread rapidly across low latitudes, but slowly into higher latitudes. Low temperature is the likely factor limiting high-latitude advancement. Several previous attempts have been made to predict future cane toad distributions in Australi...
متن کاملThe Interacting Effects of Ungulate Hoofprints and Predatory Native Ants on Metamorph Cane Toads in Tropical Australia
Many invasive species exploit the disturbed habitats created by human activities. Understanding the effects of habitat disturbance on invasion success, and how disturbance interacts with other factors (such as biotic resistance to the invaders from the native fauna) may suggest new ways to reduce invader viability. In tropical Australia, commercial livestock production can facilitate invasion b...
متن کاملThe cane toad's (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model.
Invasive species threaten biological diversity throughout the world. Understanding the dynamics of their spread is critical to mitigating this threat. In Australia, efforts are underway to control the invasive cane toad (Chaunus [Bufo] marinus). Range models based on their native bioclimatic envelope suggest that the cane toad is nearing the end of its invasion phase. However, such models assum...
متن کاملMixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia.
Understanding factors that cause species' geographic range limits is a major focus in ecology and evolution. The central marginal hypothesis (CMH) predicts that species cannot adapt to conditions beyond current geographic range edges because genetic diversity decreases from core to edge due to smaller, more isolated edge populations. We employed a population genomics framework using 24 235-33 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2010